Vaswani et al. (2017) still ‘

being state of the art

 Dr. Vaswani or: How | learned to stop ~ %a
using LSTMs and Love Attention

Vaswani et al. 2017

Output

part®

Probabilities 1C .
Mo N\\“‘ H”Q/(y a
e > . : i
ﬂ“etss L Fing " Yacﬁ,ne 7 Vaswani et al. (2017) still
st L MPleting o, our g at Cqp being state of the art
: ‘Yfa . e §OT aplec Ut ne € efse? Nie
“o\ﬂ Ya‘“ e gerse® W ystem , CS thougp, , Nice
(Add & Norm - g { t“e B e 0""‘»“ v \)Y(““S are Startin_ . 1s Not a,.
AddF& :orm (\) N¢ Opinion © This article is more than 2 years old ’tr ick forA. A
Fo:ﬁard Attention N - b Artificial intelligence (AI) b h . . 1 Hatural
. —= Arobot wrote this gntlre article. Are you
o o i M. scared yet, human?
tonton "tertion €et (GPT-3 xS .
LS L - - W
Q J —) COde {4 as L ‘&“ r>a\c;\\\’01 0
Positional & @ Positional The lat, (afld [ear ned t ‘\‘»“\ \N\“\\‘
Encoding Encoding est Natura] p, (4) d A o 1© 0@ oo
I E Igp::j' g I | Eobmsg't g I su arize, " € syst rg Ue) \‘ ‘J C\L\(\
mbeddin mbeddin:) S @) ails em Sene ° ‘ea ,5\5‘:
! ! Nguages > sy Ales e \“ "
andeye, . .S tivig . €els, peng A e
Inputs (Sh?‘[ue}gu'tgsh‘[) Wntes Its OWH quesnons; tl‘aﬂsl t poetry) B“ \]5\
i ri Computer aAleg (\e\N
Progry s

UBC Machine Learning Reading Group — Fall 2022
Alan Milligan
alanmil@student.ubc.ca

Not this Vaswani

me after making slides!

Output
Probabilities

DISCLAIMER: | am not really a deep learning person and definitely not an NLP person, so | might (read will) make some errors
> 90% of these slides were made in the last 24 hours so they also probably have issues

Positional A Positional T a’l ."\“
Encoding ®_< X Encoding he]atest natura]] dBIOg- andA edto ‘J\\QN‘\
nput Output Su .) angu
l Embedding] [Embedding] I mmaﬂzes e€ma; age System ge rgue)o e‘&\‘s
1 I anguages ang ails, answepg . Nerateg tweet B\Y)‘
Iy, S,
Inputs Outputs cven Writeg 1t v qUGStions t e p°et1y P’“
(shifted right) $ own Compyy; ’ ranskites ’
€I Progra

“Alan”

“rather”

We live in the age of transformers

Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

... the number of attention heads and the attention key and value dimensions, keeping the

amount of computation constant, as described in Section 3.2.2. While single-head attention is 0.9 ...

NeurlPS Proceedings =1

ited by 53265 BRelated articles All 46 versions 99

Advances in Neural Information Processing Systems 34 (NeurlPS 2021)

ICML | 2022

Thirty-ninth International Conference on
Machine Learning

Search Schedule Q

Dates

Calls~

Timezone: »

Resources ~

eoorie oo | 0

Attend ~

Organization v

1 of 67 matches

J one
Search

Begins with @ | Q transformer

In the way AlexNet and CNNs revolution
computer vision, the advent of the
transformer has revolutionized NLP (and
several other fields)

GPT-x, BERT, AlphaFold2, SWITCH-C, CLIP,
DALL-E and many other famous models
are all based on transformers

If you want publications and have big (like
really big) computers, you may want to
consider training giant transformers

“Alan” “sadl”

“is” “rather”
Attention is all you need - In the way AlexNet and CNNs revolution
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc computer vision, the advent of the
... the number of attention heads and the attention key and value dimensions, keeping the transformer has revolutionized NLP (and
amount of computation constant, as described in Section 3.2.2. While single-head attention is 0.9

- If you want publications and have big (like
really big) computers, you may want to
consider training giant transformers.

ICML | 2022

Thirty-ninth International Conference on
Machine Learning

Filter v Dayv | ©

Timezone:

“Alan”

w4 Problem: | Don’t Speak German (or anything else)

“rather’

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool
Statistical Methods

- We look at frequencies across large corpora

“A blast from the past”

Rule Based Methods

- We can try to hard code language rules

- This incorporates lots of domain knowledge
from the source and target language

- Modeling probabilities of translated phrases
conditioned on original phrases

- These were the original methods developed
in the 1970s

- Used things like Hidden Markov Models and
context free grammars, much closer to
“machine learning” and used in the mid 2000s

Hard Coding? N
s é = argmax p(e|f) = argmaxp(fle)p(e).

ece ece

"Weldon't do that here"

Machine Translation

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

| speak zero German but € French so | will use this example

“I like the green cat.”

How can we go about translating this
(simple) sentence?

“Yaime le chat vert.”

Machine Translation

24 Problem: | Don’t Speak German (or anything else)

“rather’

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

| speak zero German but € French so | will use this example

“I like the green cat.”

cat

-
1 1 — l
[

S

“Vaime le chat vert.”

Machine Translation

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

| speak zero German but € French so | will use this example

“I like the green cat.”

green

cat

T
| — |
=

S

How do we handle.cross- “V'aime le chat vert.”
language contractions?

“Alan”

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

| speak zero German but € French so | will use this example

Language “order” is often

not consistent

“I like the green cat.”

How do we handle.cross- “V'aime le chat vert.”
language contractions?

“Alan”

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

| speak zero German but € French so | will use this example

Language “order” is often

“I like the green cat.” .
not consistent

—
l
-

How do we handle.cross- “V'aime le chat vert.” How do we handle the end (and
language contractions? start) of sentences?
What about variable lengths?

“Alan”

Problem: | Don’t Speak German (or anything else)

“rather”

Suppose Fred and | go to his favourite German restaurant and | want to look (sound?) cool

CHINESE (SIMPLIFIED) - DETECTED ~ ENGLISH ~ SPANISH FRENCH v < ENGLISH SPANISH ARABIC v
(MEEREIED X "History of Shi's Lion Eating" e

”I Ilke the green cat. 7 AZEFLTHRE, BN, E8+0, Shishi Shishi, a poet in the stone room, was addicted to lions and

BV pEA YN swore to eat ten lions.

TB, EHIET. It is always appropriate to see the lion in the city.

=i, BRKET, At ten o'clock, the ten lions are suitable for the city.

KR+, FREB, E2TImHt, It's time for Shishi's market.

Kig2+0FE, B6%E, Shi regarded the ten lions as ten lions.

AEE, KESHAE, Shi Shi is ten lion corpses, suitable for stone chambers.

AEHR, KR HIN. The stone room was wet, so the clergyman wiped the stone room.
L P ” BN, WBIRETNF, I+RIF. The stone room was wiped, and Shi Shi began to try to eat ten lions.

Jaime le chat vert. o e room was wiped, an ganfofryto eatte
HEEE. When eating, Shi Shi was ten lion corpses, in fact ten stone lion

corpses.

“Shi shi shisht shi” shishi shi shi sht shi, shi shi, shi shishi shi. Shi shi shishishi shi shi. Shi L .
Explanation is a thing.

shi, shi shi shi shi shi. Shi shi, shi shi shi shi shi. Shi shi shi shi shi, shi shi shi, shi shi shi

shi shi shi. Shi shishi shi shi shi, shi shishi. Shishi shi, shi shi shi shi shi shi. Shi shi shi,

Good rule based or statistical

models could probably handle Oh hey it’s the mid 2010s and
this fine but things get harder... deep learning just happened!
What can we do!

Machine Translation

“Alan” “sadl”

Possibly flawed intuition: The Manifold of Meaning

- Suppose there exists some continuous ”Meaning land” — language independent

space of “meaning”, where every
sentence in every language is
represented the same

“V’aime le chat vert.”

“I like the green cat.” ,
- And then another function to take

it into a different language?

- Could we build a function that takes a
language into meaning land?

“Vaime le chat vert.”
“I like the green cat.”

‘ — Magic 2 ‘
Magic —

Deep learning is magic (alchemy?) so let’s try that!

Machine Translation e @0 = LSTMs

“Alan”

How do we make sentences continuous?

“rather”

wy |; ” Tokenization
| like the green cat.

- A sentence is broken up into “tokens”
‘ - These could be words, word parts, or characters
- There also special tokens like “<SOS>”, “<EQS>", “<O0V>", and “<PAD>"

[l(III’ ll“ke”, Ilthe”’ Ilgreen”’ llcat”’ ll-”] — o mmm mm mmm mmm mmm mmm mmm mmm mmm mmm mmm mmm mmm
Convert to token IDs
‘ - Each token is assigned an ID from a predefined lookup table
- You could think of this like a one hot vector but its usually a dictionary
[23, 796, 4012, 8923, 4850, 42] e e e - - - — — — — — — — —
Token Embedding
‘ - Each token ID is assigned a vector in a fixed dimension (512 in Vaswani)
[2.51,0.727, -0.943, -0.935, 0.072, 0.573], | - These vectors are initialized with Gaussian noise
[-0.4, -2.73,0.906, 0.026, 0.216, 0.571], _ e H .
(0165, 113, 0181, 0.086, 0,242, -2.35], Over the course of t.ramlng, the embeddlr.lg vector is treated a§ a
[0.279, 1.11, -0.896, 0.593, -0.211, -1.21], parameter and gradients are propagated into the vector to train
. === dembed
[-2.03, 0.799, 0.448, 1.34, 1.14, -0.639], V ¢ v
[-1.71,-0.163, 0.863, -1.01, 1.21, 0.73], xembed < Model LosS
[-0.932, -0.599, 0.558, -1.13, 1.54, 1.34],
[0.782,-0.542, -0.00264, -0.99, -1.9, 0.399]

—

Machine Translation e @0 = LSTMs

Warning: Entering hand wavey zone

WARNING

DANGER

)\-
" THEN 4 W obc

v MIRAC Cul
; OCCUK{,‘E _b\ iy f_'}ﬁ'(

‘\(-} X‘T; T F ’

ﬂ A1
- Avis

“I think you should be more explicit here in step two.”

2wt Recurrent Neural Network TLDR

“rather’

How about we have a neural network eat these vectors one by one, plus the output of the previous step

Do this for each of the Do this until the network X = source embedding vectors
ng.. input embeddings » Roncodi » produces an end token h; = latent state vectors
encoawng _ .
vy = predicted token
hy = f(x¢, he—1) Yer = f(her—q) [Yer-1]) f = neural network

Visually, (using some Stanford guy’s notation) PROBLEMS:

- It’s hard to model long range dependencies because the
model sees x,, much later than x,

17<1> g<Ty>
— J N - Nencoaing 1S Of fixed size, so it can only hold so much
C J"---"D"---" e information (related to the first point)
o : : - S
; ; - Optimization is hard because propagating gradients
\ — backwards in time involves taking matrices to high

powers, leading to vanishing or exploding gradient

Machine Translation e @ = LSTMs

“Alan” “sadl”

How about we have a neural network eat these vectors one by one, plus the output of the previous step

Do this for each of the Do this until the network X = source embedding vectors
ng-. input embeddings

h produces an end token h; = latent state vectors
encoding 4 P TO D I P

Note: | am skipping a lot of details like what the inside of that neural network actually looks like,

but hopefully this gives an intuition

Rencoaing is Of fixed size, so it can only hold so much
S92 information (related to the first point)

L<1> <Ty> - Optimization is hard because propagating gradients
backwards in time involves taking matrices to high
powers, leading to vanishing or exploding gradient

“Alan”

Long Short-Term Memory TLDR (“fancy” RNNs)

Instead of just storing h; as a function of x; and h;_1, we can also store another hidden state c;

Possibly Flawed Intuition Unreadable Math LSTM Cell

- Let h; be the “short term memory, fo = 0y (Wyzs + Uphe s + by forget . 1_’ . D R
updated by a network output of each , D
} i it = og(Wize + Uihi—1 + b;) (input) 5
new input and previous short-term on = o (Woy + Uhe s -+ by) (outout) % "T
memory ¢t = o.(Wexy + Uchi—1 + b.) (candidate memory) ety Y, e
¢t =ft®ci1 +1i O (updated long memory)
- Let Ct be the ”Iong term memory,” ht = o ® oy, (Ct) (updated short memory) O
updated by a learned linear combination
of previous memory and the input —— O g >" _<
- Long term memory acts like residual connections - The amount of information that can be propagated
which allow for much better gradient flow during forward is still fixed and long term dependencies can still
optimization be forgotten
- (ideally) the network can learn to remember - Vanishing/Exploding gradient can still happen albeit less

important stuff in ¢,

Machine Translation e @ = LSTMs

“Alan” “sadl”

Instead of just storing h; as a function of x; and h;_;, we can also store another hidden state c;

- Let h; be the “short term memory,”
updated by a network output of each
new input and previous short-term

ft = U{/("I‘vfﬂ.’f FUph—q bf)(forget) Ct—1 P
i = 0g(Wize + Uihi—1 + b;) (input)

Note: | am skipping a lot of details again

- Long term memory acts like residual connections - The amount of information that can be propagated
which allow for much better gradient flow during forward is still fixed and long term dependencies can still
optimization be forgotten

- (ideally) the network can learn to remember - Vanishing/Exploding gradient can still happen albeit less

important stuff in ¢,

“Alan”

swd Summary: RNNs are problematic

e e e e ¢ and h; have predetermined size, so in problems with large inputs it will
be challenging to squeeze all information into these vectors

The sequential processing of inputs means that inputs early in the
Long Term Dependency Issues . :
sequence can be forgotten in very long sequences, even in LSTMs

Optimization Issues Back.propagation jchrough ti.me. means.exponentiatipg matrices many times,
leading to exploding or vanishing gradients depending on the eigenvalues
T RNNs are fundamentally sequential, meaning it is impossible to parallelize
Parallelization Issues : . . :
processing of a sequence, slowing down training and inference

Machine Translation e @ = LSTMs

“Alan”

swd Summary: RNNs are problematic

e e e e ¢ and h; have predetermined size, so in problems with large inputs it will
be challenging to squeeze all information into these vectors
TorE T Deparieney [saes The sequential processing qf inputs means that inputs ea.rly in the
sequence can be forgotten in very long sequences, even in LSTMs
Optimization Issues Back.propagation jchrough ti.me. means.exponentiatipg matrices many times,
leading to exploding or vanishing gradients depending on the eigenvalues

RNNs are fundamentally sequential, meaning it is impossible to parallelize

Parallelization Issues : . . :
processing of a sequence, slowing down training and inference

Machine Translation e @ = LSTMs

“Alan”

2w Finally, pay Attention (in an RNN)

Step 1
e .
How can we better model long range dependencies? Generate all h, in the encoding phase

Idea: In the decoding phase, use a weighted combination of all h;
so that we “pay attention” to the more important parts of the h; Repeat for until <EOS> token
@) @2 D Step 2.1
] I I ' Compute Score(s;, h;) for current decoder state
i | s; and all encoder states h;

The attention mechanism So - o decoder o deeoderl

1 2 3
a, @z, A3, A4 }01 }Cz)03)a,

C1,C2,C3,Cq

Step 2.2
Compute attention weights as Softmax(scores)

Step 2.3
Compute context vector ¢; as attention weighted

sum of all h;
Step 2.4

Decode using s; and ¢; as decoder input

Step 3

Note this diagram happens in sequence not all at once Profit

Machine Translation — @0 =) LSTMs — @ =)

“Alan”

Options from Lilian Weng’s blog

Name

Content-base
attention

Additive(*)

Location-Base

General

Dot-Product

Scaled

Dot-Product(”®)

“rather”

What is score though?

Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Some authors use score functions with learned
parameters

score(8, h;) = cosine[s;, h;] Graves2014
score(sy, h;) = v tanh(W[s; h;]) Bahdanau2015 /
a;; = softmax(W ,s;)

Note: This simplifies the softmax alignment to only depend on the Luong2015
target position.

score(8s, h;) = 8] W, h;
where W , is a trainable weight matrix in the attention layer.

Alignment score function Citation

Luong2015 We focus on scaled dot-product attention as it is used

in Vaswani .
score(sy, hi) = 8/ h; Luong2015 aswani et a

Th:
score(s, h;) = f\‘/% h ST! hZ
Note: very similar to the dot-product attention except for a Vaswani2017 Score 3 t ’ ,l: — —

scaling factor; where n is the dimension of the source hidden \/n
state.

Recall from math that a dot product is a measure of
similarity in a vector space

Machine Translation — @0 =) LSTMs — @ =)

“Alan” “sadl”

“rather”

Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Some authors use score functions with learned
parameters

Name Alignment score function Citation

TLDR: Attention is a method of deciding which inputs to care about

in Vaswani et al.

Dot-Product score(s;, h;) = 8, h; Luong2015
score(s;, ;) = 2L SThl
% —
gcflid et Note: very similar to the dot-product attention except for a Vaswani2017 S Core (S t 9 hl S
ot-Product(”) scaling factor; where n is the dimension of the source hidden

state. \/n

Recall from math that a dot product is a measure of
similarity in a vector space

“Alan”

sws E£nter Michael Bay:

he Transformer

In an RNN with attention we are using all h;, why don’t we just ditch the recurrent part

Machine Translation — @' =)

Every arrow
here is an
attention
computation

S—

LSTMs

Vaswani et al. proposes:
“Attention is all you need”

Have an encoder where all input
embeddings pay attention to all other
input embeddings

Add “positional encodings” to input
embeddings so that the sequential
structure is retained

Have a decoder that pays attention to
all input embeddings as well as the
already decoded embeddings

— o — [— =~ —

“Alan”

s Step 1: Self-Attention Encoder

)
(B
~>| Add & Norm |
Feed
Forward
A \
—
Nx | —("Add & Norm)
Multi-Head
Attention
L
_ J
Positional D
Encoding
Input
Embedding
Inputs
Machine Translation [@. —p LSTMs

Lets build a Transformer Encoder!

Encoder Objective

Create an “interesting” learned
representation of the inputs useful for
the Decoder (next)

1. Embeddings + Positional Encodings
2. Multi-Head Attention
3. Residual Connection and Layer Norm

4. Fully Connected Layer

— o — [— =~ —

“Alan”

sws Step 1.1: Positional Encodings

Word Embedding

Same as earlier, Token IDs mapped into real vectors that
are learned during training

Positional Encoding

N — y 2":/dmodel
PE(pos,Z%) - szn(pos/lOOOO) - Vectors defined by this formula are added to each word embedding
PE(pos 2i+1) = cos(pos/lOOOO%/dmde‘) vector to add “relative position” between embeddings

- Not intuitive to me, but this formula allows for easy relative position
learning via some trigonometric addition identities

- You can also just add torch.nn.Embedding style absolute positional
encodings in the same way as word embedding and learn via

backpropagation (Vaswani et al. tested this with similar results)

40 60 80
DDDDD

Y — - — I - - — — o

swd Step 1.2: Multi-Head Self-Attention

Here is where the real magic happens

Recall Scaled Dot-Product Attention More is Better

Th:
score(ss, h;) = f\t/#

escore(sg,h;)

Rather than doing attention once on the input, lets do
it N (= 6) times

Attention(ss, h;) =

n score(s¢,h ;)
j=1€ ’

N different copies of projection matrices are learned,
attention is run N times, and then all outputs are

projected back to d;;;p4e1

- In Vaswani et al, we do a learned projection of the input to
produce matrices Q, K, which are analogous to s, h above

- The columns of the non-linear matrix product are akin to
the attention weights in the RNN example, we use these
weights on another learned projection of the input I/

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W ©°
where head; = Attention(QW2, KWK VW)

QK"
Vi,

- More heads mean different heads can learn different
things like grammar and vocabulary

Attention(Q, K, V') = softmax(

W

- Also ensemble good

T — - — I - - — — o

“Alan”

swa Step 1.3: Layer Norm and Residual Connections

“rather’

Layer Normalization Residual Connections

- Given the activations of a layer, we compute the mean
and standard deviation

- As with ResNets from vision, instead of directly
transforming the input, we learn a residual, then
apply layer norm

- We subtract and divide by these values respectively,
then multiply and add by learned parameters (so that
the identity can be learned as in Batch Norm)

1 & 1 & 2
u’=ﬁ;aﬁ; ol = | > (@i —u)

LayerNorm(z) = X (z — u') + 3

A
[\

LayerNorm(x + Sublayer(x))

Where Sublayer(x) is either Multi-Head Attention or a
feed forward network

- Residual Connections have been shown to make
optimization easier in cases where transformations
should be close to identity maps

something something “reduce internal covariate shift”

T — - — I - - — — o

sxs Step 1.4: Position-wise Feed Forward Network

Here we have a simple two layer ReLU network that acts on each embedding individually

FFN(z) = max(0,zW; + b1)Ws + by

'_T_‘
512 2048 512 {
Machine Translation [@. —> LSTMs — @ — e @. —

“Alan”

swd Self-Attention Encoder Assembled!

“rather’

)
()
~>{ Add & Norm |
Feed
Forward
A \
N
N ~—>| Add & Norm |
Multi-Head
Attention
A
_ J
Positional D
Encoding
Input
Embedding
Inputs

Machine Translation [Ralll: *- =

LSTMs

With these pieces, we can now create a latent representation of an
input sentences where each vector has applied self attention N times
across h heads

In Vaswanietal, N=6and h =8

The output is a matrix of embedding vectors in R™Xdmodel (nx
512)

We can now use this in step 2: the Decoder

— o — [— =~ —

“Alan”

sx4 Step 2: Masked and Cross Attention Decoder

Probabilities Decoder Objective

Given Encoder(“l like the green cat. <EOS>") and
Decoder(“<SOS> J'aime le chat ”), predict “vert”.

Linear

(.)
Add & Norm
Feed

o] Ingredients
{

N aras 1. Embeddings + Positional Encodings [Done]
) Nx
2. Masked Self Attention
Masked
Multi-Hgad
— T 3. Residual Connection and Layer Norm [Done]
_ —
&~ Froang 4. Encoder-Decoder Cross Attention
Output
Embedding
T 5. Fully Connected Layer [Done]
Outputs
iPbisdingn 6. Output Layer

Y — v - I — - — o

i Step 2.2: Masked Self Attention

- Vaswani et al. wanted to “preserve [the] auto-regressive property” of the model, meaning that no
word should be able to attend to words decoded after it

- This is accomplished with “masking,” which essentially sets the score of later entries to zero

Visualizing Legal Attention Connections

This triangular mask represents which
position each position can attend to

CWOWoONOOOAWN-—=+O

asking

E:;é | ' As math,
1 - KT
o l Softmax (% O M)V
o ' (vd)

SrNnYBOrEROCUNIOOLDD Where M is the lower triangular matrix on the left

—_rrF—_F—_—_r—_r—— -

Window

T — - — T - - — — o

“Alan”

swa Step 2.4: Encoder-Decoder Cross Attention

- We want the decoder to be able to use the “interesting” representation learned by the encoder

- This is done by letting the decoder embeddings attend to the keys and values of the Encoder

Projected Decoder Output Projected Encoder Output As before, this is really multi-head cross attention

Decoder Output Encoder Output

Attention(Q, K, V') = softmax(

: o
((Add & Norm MultiHead(@, K, V) = Concat(heady, ..., heady,)W
Add & Norm | v .H = o . y
T Alit;ﬁii where head; = Attention(QW,*, KW;*,VW,")
Forward N x
)

T — - — I - - — — o

“Alan”

4 Step 2.6: Output Projection

After N decoder layers, we project up to the dimension of the target vocabulary and softmax for predictions

n
Probability vector

n
M Softmax() During training/testing, we fged in
the whole target sentence shifted

by <SOS> since the self attention
mask will make it seem like you are
doing a one step prediction at
every position. This was non-
obvious to me.

Vocab size =—

512

Y — v - I — - — o

“Alan”

“rather”

We have assembled the full

ransformer!

Output
Probabilities

(¢)
Add & Norm

Feed
Forward

| Add & Norm |::

r 1 ™
;-—]Add gl Multi-Head
Feed Attention
Forward) Nx
—
Nx Add & Norm
f—>| Add & Norm | |
Multi-Head Multi-Head
Attention Attention
, VO, S t
& J ¥,
Positional Positional
Encod ? ¢ |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Machine Translation :§:§. -

LSTMs

That was a lot of deep learning jargon that | don’t expect everyone to
understand

It took me over 10 attempts to grasp all of this and I still have questions

Transformer TLDR:

Embed source words with some learnable vector plus positional encodings

Run a few rounds of scaled dot product self attention plus a layer
normalized feedforward network for your source embeddings

Embed known target words (or <SOS>) with some learnable vector plus
positional encodings

Run a few rounds of forward masked self attention, cross attention with the
encoded source sentence, layer normalization, and a feedforward network

Project and softmax the output, profit

— s — [— - —~

“Alan”

s%4 How to train your transformer

We now know the architecture, but there are still some training details

Regularization

1. Despite no mention in the
paper, all implementations
I've seen use "weight
decay,” also known as L2
regularization

2. Dropout is applied to both
attention and feed forward

layers as well as the
embeddings

3. ”Label Smoothing” which
punishes incorrect softmax
outputs slightly less

Machine Translation — @ =)

LSTMs

Cross Entropy loss is applied
between the prediction
vector and (smoothed) label
vector

The loss is computed
independently for each
prediction in a forward pass,
recalling that we make several
predictions concurrently

lrate = d_;; - min(step_num

Everyone’s good friend Adam
is used for optimization with
the following odd learning
rate schedule using 4000
warmup steps (no justification
provided)

—0.5 —-0.5 1.5)

, step_num - warmup_steps

— o — [— =~ —

“Alan”

How to inference your transformer

“rather”

Output
Probabilities

You get a
probability vector
for the next word

To get the better predictions, Vaswani et al. (and NLP in
general) will use BeamSearch(b), a process where we
autoregressively predict b copies until all reach <EOS>

Each beam is ranked by total probability, and we only
propagate the top b at any given time (the others die)

Feed
Forward ABA
[_ﬁ@: ABB
/_H Add & Norm AA
Add & Norm s (aB) ABC 016
Feed Attention ABD
Forward Nx o AC /] <END>
ABE
AD
N Add & Norm /] AB-END
x Add & Norm Vaskod B
Mult-Head Multi-Head AEe .
Attention Attention <START> AEA I n th |S exa m p | e b = 2
L W - L - D AEB <END>
_ J U) E CA
Positi " Ny (AE) AEC e
ositional @—6 A Positional e c8
Encoding 4 Encoding oo x AED 02
Input Output co AEE
Embedding Embedding AZ-END
T I CE
Inputs Outputs cEe
(shifted right) Candid
. andidate
III ||ke the Sequences A C AB, AE ABC, AED
" ”
<S0OS> i it i
4 Position 1 Position 2 Position 3
green cat.

Machine Translation

—_— o —p

LSTMs

— o — [— =~ —

“Alan” “sadl”

“rather”

ransformer Benefits

Long Range Dependency

- Self-attention can model arbitrarily long sequences in
constant distance

- This completely removes the issue RNNs face about
forgetting the start (or middle for bidirectional) of the

sequence

- Below are visualized attention weights during translation

[START]
primeiro
livro
[END]

S
g 3 &

este
e
o]

Is
the
first
book

did

[END]

Machine Translation [y :@ —>

Computational Efficiency

Since we no longer have to process sentences token by token, Transformers
are extremely parallelizable and GPU friendly

Self attention masking means each training sequence of length n gives us n
gradients from one forward pass

Every attention had can be on a on a different machine, every layer can be
on a different machine, the encoder and decoder can be on different
machines, etc.

Some argue the true reason transformers perform is simply that we are
able to scale them to levels that would be impossible for other methods

n00000 you can't just scale up pure .
connectionist models on Internet data without haha gpus go bitterrr
inductive biases and modularization and expect

them to learn real-world knowledge and grammar from

form, or arithmetic and logical reasoning and causal

i e-that's just me ion and su

— s — [— - —~

“Alan”

“Generic Results Table

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on th
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ofe EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4.10%°
ConvS2S [9] 25.16 40.46 9.6-10'% 1.5.102%
MoE [32] 26.03 40.56 2.0-101% 1.2.102%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%°
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1-10*
ConvS2S Ensemble [9] 26.36 41.29 7.7-101° 1.2.102!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%°

| have elected to leave BLEU out of the talk, but it’s a
measure of how good translation is and more is better

Also note the FLOPs difference relative to performance

Machine Translation [l ST = LSTMs —_— S —p Attention —_— S —p

“Alan”

“rather”

My unsolicited comments

Good stuff

- If you read machine learning literature, you know these
models have revolutionized several fields

- There are some very cool tricks and innovations that |
have struggled to highlight in this paper, notable how self
attention masking can give you multiple independent
gradients for in a single pass

- llike that “X is all you need” has become a meme title

- Transformer based models generate the best news
headlines

ART IS IN THE AI OF THE BEHOLDER —

Al wins state fair art contest, annoys humans

Stealth win for Al-generated art inspires heated ethics debate on social media.

Machine Translation [2%:% —> LSTMs

Not good stuff

Training is great if you have a DGX A100 server lying around, but
it took 2 days on my laptop to get through 20 epochs of 1000
before my laptop threw some OS error and killed it

Self-attention across all inputs is an 0(n?) operation (all inputs
attend to all other inputs), which can very extremely costly when
you deal with things like images

There is much in trying to solve the above problem such as the
Performer, Linformer, and Reformer (great original names guys)

Despite the technical innovations and contributions, the qualit
of Attention is all you need as a paper is f REDACTED

REDACTED =&

— s — [— - —~

Thanks for listening |

Feedback appreciated | am very inexperience at presenting technical content

see there’s a typol

