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DISCLAIMER: I am not really a deep learning person and definitely not an NLP person, so I might (read will) make some errors
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Machine Translation LSTMs Attention Transformers

“Alan”
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“sad!”

We live in the age of transformers

- In the way AlexNet and CNNs revolution 
computer vision, the advent of the 
transformer has revolutionized NLP (and 
several other fields)

- GPT-𝓍, BERT, AlphaFold2, SWITCH-C, CLIP, 
DALL-E and many other famous models 
are all based on transformers

- If you want publications and have big (like 
really big) computers, you may want to 
consider training giant transformers
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We live in the age of transformers

- In the way AlexNet and CNNs revolution 
computer vision, the advent of the 
transformer has revolutionized NLP (and 
several other fields).

- GPT-X, BERT, AlphaFold2, SWITCH-C, CLIP, 
DALL-E are all based on transformers

- If you want publications and have big (like 
really big) computers, you may want to 
consider training giant transformers.

TLDR: All those fancy models by Google/OpenAI/Deepmind/Meta are often just really big transformers
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Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool 

Rule Based Methods Statistical Methods

“A blast from the past”

- We can try to hard code language rules

- This incorporates lots of domain knowledge 
from the source and target language

- These were the original methods developed 
in the 1970s 

Hard Coding?

- We look at frequencies across large corpora

- Modeling probabilities of translated phrases 
conditioned on original phrases

- Used things like Hidden Markov Models and 
context free grammars, much closer to 
“machine learning” and used in the mid 2000s
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Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool 

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

How can we go about translating this 
(simple) sentence?
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Je aime le chat vert .

How do we handle cross-
language contractions?
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language contractions?

Language “order” is often 
not consistent
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Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool 

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

I like the green cat .

Je aime le chat vert .

How do we handle cross-
language contractions?

Language “order” is often 
not consistent

How do we handle the end (and 
start) of sentences?

What about variable lengths?
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Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool 

“I like the green cat.”

“J’aime le chat vert.”

Good rule based or statistical 
models could probably handle 

this fine but things get harder…
Oh hey it’s the mid 2010s and 
deep learning just happened!

What can we do!
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Possibly flawed intuition: The Manifold of Meaning

- Suppose there exists some continuous 
space of “meaning”, where every 
sentence in every language is 
represented the same 

- Could we build a function that takes a 
language into meaning land?

“I like the green cat.”
“J’aime le chat vert.”

”Meaning land” – language independent

Magic

“I like the green cat.”

- And then another function to take 
it into a different language?

Magic 2

“J’aime le chat vert.”

Deep learning is magic (alchemy?) so let’s try that!
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How do we make sentences continuous? 
“I like the green cat.”

[“I”, “like”, “the”, “green”, “cat”,  “.”]

[23, 796, 4012, 8923, 4850, 42]

[-2.51, 0.727, -0.943, -0.935, -0.072, 0.573],
[-0.4,  -2.73, 0.906, 0.026, 0.216, 0.571],
[0.169, -1.13, 0.181, 0.086, 0.242, -2.35],
[0.279, 1.11, -0.896, 0.593, -0.211, -1.21],

.

.

.
[-2.03, 0.799, 0.448, 1.34, 1.14, -0.639],
[-1.71, -0.163, 0.863, -1.01, 1.21, 0.73],
[-0.932, -0.599, 0.558, -1.13, 1.54, 1.34],
[0.782, -0.542, -0.00264, -0.99, -1.9, 0.399]

Tokenization

Convert to token IDs

Token Embedding

- A sentence is broken up into “tokens”
- These could be words, word parts, or characters 
- There also special tokens like “<SOS>”, “<EOS>”, “<OOV>”, and “<PAD>”

- Each token is assigned an ID from a predefined lookup table
- You could think of this like a one hot vector but its usually a dictionary

𝑑!"#!$

- Each token ID is assigned a vector in a fixed dimension (512 in Vaswani)
- These vectors are initialized with Gaussian noise
- Over the course of training, the embedding vector is treated as a 

parameter and gradients are propagated into the vector to train

Model Loss𝑥#$%#&
∇ ∇



Warning: Entering hand wavey zone
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Recurrent Neural Network TLDR
How about we have a neural network eat these vectors one by one, plus the output of the previous step

ℎ! = 𝑓(𝑥! , ℎ!"#)

Do this for each of the 
𝑛$%& input	embeddings

Encoding

ℎ'(&)*+(,
𝑦!- = 𝑓(ℎ!!"#, [𝑦!-"#])

Do this until the network 
produces an end token

Decoding

𝑥! = source embedding vectors
ℎ! = latent state vectors
𝑦! = predicted token
𝑓 = neural network

Visually, (using some Stanford guy’s notation) PROBLEMS:

- It’s hard to model long range dependencies because the 
model sees 𝑥( much later than 𝑥.

- ℎ'(&)*+(, is of fixed size, so it can only hold so much 
information (related to the first point)

- Optimization is hard because propagating gradients 
backwards in time involves taking matrices to high 
powers, leading to vanishing or exploding gradient
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How about we have a neural network eat these vectors one by one, plus the output of the previous step

ℎ! = 𝑓(𝑥! , ℎ!"#)

Do this for each of the 
𝑛$%& input	embeddings

Encoding

ℎ'(&)*+(,
𝑦!- = 𝑓(ℎ!!"#, [𝑦!-"#])

Do this until the network 
produces an end token

Decoding

𝑥! = source embedding vectors
ℎ! = latent state vectors
𝑦! = predicted token
𝑓 = neural network

Visually, (using some Stanford guy’s notation) PROBLEMS:

- It’s hard to model long range dependencies because the 
model sees 𝑥( much later than 𝑥.

- ℎ'(&)*+(, is of fixed size, so it can only hold so much 
information (related to the first point)

- Optimization is hard because propagating gradients 
backwards in time involves taking matrices to high 
powers, leading to vanishing or exploding gradient

Note: I am skipping a lot of details like what the inside of that neural network actually looks like,
but hopefully this gives an intuition
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Long Short-Term Memory TLDR (“fancy” RNNs)
Instead of just storing ℎ! as a function of 𝑥! and ℎ!"#, we can also store another hidden state 𝑐!

Possibly Flawed Intuition

- Let ℎ! be the “short term memory,” 
updated by a network output of each 
new input and previous short-term 
memory

- Let 𝑐! be the “long term memory,” 
updated by a learned linear combination 
of previous memory and the input

ℎ!"#

𝑐!"#

LSTM CellUnreadable Math

(forget)

(input)

(output)

(candidate memory)

(updated long memory)

(updated short memory)

Benefits Remaining Issues

- Long term memory acts like residual connections 
which allow for much better gradient flow during 
optimization

- (ideally) the network can learn to remember 
important stuff in 𝑐!

- The amount of information that can be propagated 
forward is still fixed and long term dependencies can still 
be forgotten

- Vanishing/Exploding gradient can still happen albeit less
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Long Short-Term Memory TLDR (“fancy” RNNs)
Instead of just storing ℎ! as a function of 𝑥! and ℎ!"#, we can also store another hidden state 𝑐!

Possibly Flawed Intuition

- Let ℎ! be the “short term memory,” 
updated by a network output of each 
new input and previous short-term 
memory

- Let 𝑐! be the “long term memory,” 
updated by a learned linear combination 
of previous memory and the input

ℎ!"#

𝑐!"#

LSTM CellUnreadable Math

(forget)

(input)

(output)

(candidate memory)

(updated long memory)

(updated short memory)

Benefits Remaining Issues

- Long term memory acts like residual connections 
which allow for much better gradient flow during 
optimization

- (ideally) the network can learn to remember 
important stuff in 𝑐!

- The amount of information that can be propagated 
forward is still fixed and long term dependencies can still 
be forgotten

- Vanishing/Exploding gradient can still happen albeit less

Note: I am skipping a lot of details again
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Summary: RNNs are problematic

Optimization Issues

Parallelization Issues

Long Term Dependency Issues

Fixed Context Information 𝑐! and ℎ! have predetermined size, so in problems with large inputs it will 
be challenging to squeeze all information into these vectors 

The sequential processing of inputs means that inputs early in the 
sequence can be forgotten in very long sequences, even in LSTMs

Backpropagation through time means exponentiating matrices many times, 
leading to exploding or vanishing gradients depending on the eigenvalues

RNNs are fundamentally sequential, meaning it is impossible to parallelize  
processing of a sequence, slowing down training and inference
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Finally, pay Attention (in an RNN)
How can we better model long range dependencies?

Idea: In the decoding phase, use a weighted combination of all ℎ!
so that we “pay attention” to the more important parts of the ℎ!

Note this diagram happens in sequence not all at once

Score(𝑠% , ℎ&)

Step 1
Generate all ℎ! in the encoding phase

Step 2
Repeat for until <EOS> token

Step 2.1
Compute Score(𝑠+ , ℎ/) for current decoder state 

𝑠+ and all encoder states ℎ/
Step 2.2

Compute attention weights as Softmax(scores)
Step 2.3

Compute context vector 𝑐+ as attention weighted 
sum of all ℎ/

Step 2.4
Decode using 𝑠+ and 𝑐+ as decoder input

Step 3

Profit
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What is score though?
Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Options from Lilian Weng’s blog
Some authors use score functions with learned 
parameters

We focus on scaled dot-product attention as it is used 
in Vaswani et al.

Recall from math that a dot product is a measure of 
similarity in a vector space
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What is score though?
Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Options from Lilian Weng’s blog
Some authors use score functions with learned 
parameters

We focus on scaled dot-product attention as it is used 
in Vaswani et al.

Recall from math that a dot product is a measure of 
similarity in a vector space

TLDR: Attention is a method of deciding which inputs to care about
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Enter Michael Bay: The Transformer
In an RNN with attention we are using all ℎ!, why don’t we just ditch the recurrent part

Every arrow 
here is an 
attention 
computation

Vaswani et al. proposes: 
“Attention is all you need”

- Have an encoder where all input 
embeddings pay attention to all other 
input embeddings 

- Add “positional encodings” to input 
embeddings so that the sequential 
structure is retained

- Have a decoder that pays attention to 
all input embeddings as well as the 
already decoded embeddings
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Step 1: Self-Attention Encoder

Ingredients

1. Embeddings + Positional Encodings

2. Multi-Head Attention

3. Residual Connection and Layer Norm

4. Fully Connected Layer

Lets build a Transformer Encoder!

Encoder Objective

Create an “interesting” learned 
representation of the inputs useful for 

the Decoder (next)
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Step 1.1: Positional Encodings
Word Embedding

Positional Encoding

Same as earlier, Token IDs mapped into real vectors that 
are learned during training

- Vectors defined by this formula are added to each word embedding 
vector to add “relative position” between embeddings 

- Not intuitive to me, but this formula allows for easy relative position 
learning via some trigonometric addition identities

- You can also just add torch.nn.Embedding style absolute positional 
encodings in the same way as word embedding and learn via 
backpropagation (Vaswani et al. tested this with similar results)
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Step 1.2: Multi-Head Self-Attention
Here is where the real magic happens

Recall Scaled Dot-Product Attention

- In Vaswani et al, we do a learned projection of the input to 
produce matrices 𝑄,𝐾, which  are analogous to 𝑠, ℎ above 

- The columns of the non-linear matrix product are akin to 
the attention weights in the RNN example, we use these 
weights on another learned projection of the input 𝑉

More is Better

- Rather than doing attention once on the input, lets do 
it N (= 6) times 

- N different copies of projection matrices are learned, 
attention is run N times, and then all outputs are 
projected back to 𝑑0)*'1

- More heads mean different heads can learn different 
things like grammar and vocabulary

- Also ensemble good
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Step 1.3: Layer Norm and Residual Connections

Layer Normalization

- Given the activations of a layer, we compute the mean 
and standard deviation

- We subtract and divide by these values respectively, 
then multiply and add by learned parameters (so that 
the identity can be learned as in Batch Norm)

something something “reduce internal covariate shift”

Residual Connections

- As with ResNets from vision, instead of directly 
transforming the input, we learn a residual, then 
apply layer norm

Where Sublayer(x) is either Multi-Head Attention or a 
feed forward network

- Residual Connections have been shown to make 
optimization easier in cases where transformations 
should be close to identity maps
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Step 1.4: Position-wise Feed Forward Network
Here we have a simple two layer ReLU network that acts on each embedding individually  

512

n

n

2048 512

n
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Self-Attention Encoder Assembled!

- With these pieces, we can now create a latent representation of an 
input sentences where each vector has applied self attention N times 
across h heads 

- In Vaswani et al, N = 6 and h = 8

- The output is a matrix of embedding vectors in                           (n x 
512)

- We can now use this in step 2: the Decoder
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Step 2: Masked and Cross Attention Decoder

Ingredients

1. Embeddings + Positional Encodings [Done]

2. Masked Self Attention

3. Residual Connection and Layer Norm [Done]

4. Encoder-Decoder Cross Attention

5. Fully Connected Layer [Done]

6. Output Layer

Decoder Objective

Given Encoder(“I like the green cat. <EOS>”) and 
Decoder(“<SOS> J’aime le chat ”), predict “vert”.
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Step 2.2: Masked Self Attention
- Vaswani et al. wanted to “preserve [the] auto-regressive property” of the model, meaning that no 

word should be able to attend to words decoded after it  

- This is accomplished with “masking,” which essentially sets the score of later entries to zero

This triangular mask represents which 
position each position can attend to

Visualizing Legal Attention Connections

As math,

Where M is the lower triangular matrix on the left
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Step 2.4: Encoder-Decoder Cross Attention
- We want the decoder to be able to use the “interesting” representation learned by the encoder

- This is done by letting the decoder embeddings attend to the keys and values of the Encoder

Projected Decoder Output Projected Encoder Output As before, this is really multi-head cross attention

Decoder Output Encoder Output

Q

K,V
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Step 2.6: Output Projection

n

n

Vocab size512

After N decoder layers, we project up to the dimension of the target vocabulary and softmax for predictions

Softmax()

Probability vector

Important Note:

During training/testing, we feed in 
the whole target sentence shifted 
by <SOS> since the self attention 
mask will make it seem like you are 
doing a one step prediction at 
every position. This was non-
obvious to me.
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We have assembled the full Transformer!
- That was a lot of deep learning jargon that I don’t expect everyone to 

understand 

- It took me over 10 attempts to grasp all of this and I still have questions

Transformer TLDR:

- Embed source words with some learnable vector plus positional encodings

- Run a few rounds of scaled dot product self attention plus a layer 
normalized feedforward network for your source embeddings

- Embed known target words (or <SOS>) with some learnable vector plus 
positional encodings

- Run a few rounds of forward masked self attention, cross attention with the 
encoded source sentence, layer normalization, and a feedforward network

- Project and softmax the output, profit
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How to train your transformer
We now know the architecture, but there are still some training details

Regularization

1. Despite no mention in the 
paper, all implementations 
I’ve seen use ”weight 
decay,” also known as L2 
regularization

2. Dropout is applied to both 
attention and feed forward 
layers as well as the 
embeddings 

3. ”Label Smoothing” which 
punishes incorrect softmax
outputs slightly less

Loss Function Optimizer

- Cross Entropy loss is applied 
between the prediction 
vector and (smoothed) label 
vector

- The loss is computed 
independently for each 
prediction in a forward pass, 
recalling that we make several 
predictions concurrently

- Everyone’s good friend Adam 
is used for optimization with 
the following odd learning 
rate schedule using 4000 
warmup steps (no justification 
provided)
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How to inference your transformer

Forward Pass Beam Search

“I like the 
green cat.” “<SOS>”

You get a 
probability vector 
for the next word

- To get the better predictions, Vaswani et al. (and NLP in 
general) will use BeamSearch(b), a process where we 
autoregressively predict b copies until all reach <EOS>

- Each beam is ranked by total probability, and we only 
propagate the top b at any given time (the others die)

In this example b = 2
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Transformer Benefits

Long Range Dependency Computational Efficiency
- Self-attention can model arbitrarily long sequences in 

constant distance

- This completely removes the issue RNNs face about 
forgetting the start (or middle for bidirectional) of the 
sequence

- Below are visualized attention weights during translation

- Since we no longer have to process sentences token by token, Transformers 
are extremely parallelizable and GPU friendly

- Self attention masking means each training sequence of length n gives us n 
gradients from one forward pass

- Every attention had can be on a on a different machine, every layer can be 
on a different machine, the encoder and decoder can be on different 
machines, etc.

- Some argue the true reason transformers perform is simply that we are 
able to scale them to levels that would be impossible for other methods
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Generic Results Table

I have elected to leave BLEU out of the talk, but it’s a 
measure of how good translation is and more is better

Also note the FLOPs difference relative to performance
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My unsolicited comments

Good stuff Not good stuff

- If you read machine learning literature, you know these 
models have revolutionized several fields

- There are some  very cool tricks and innovations that I 
have struggled to highlight in this paper, notable how self 
attention masking can give you multiple independent 
gradients for in a single pass

- I like that “X is all you need” has become a meme title

- Transformer based models generate the best news 
headlines 

- Training is great if you have a DGX A100 server lying around, but 
it took 2 days on my laptop to get through 20 epochs of 1000 
before my laptop threw some OS error and killed it

- Self-attention across all inputs is an 𝑂(𝑛%) operation (all inputs 
attend to all other inputs), which can very extremely costly when 
you deal with things like images

- There is much in trying to solve the above problem such as the 
Performer, Linformer, and Reformer (great original names guys)

- Despite the technical innovations and contributions, the quality 
of Attention is all you need as a paper is fucking terrible how did 
these people get published jesus this took way too long…..

REDACTED
REDACTED



Thanks for listening !

Feedback appreciated I am very inexperience at presenting technical content

see there’s a typo!


