

UBC Machine Learning Reading Group – Fall 2022
Alan Milligan
alanmil@student.ubc.ca

Dr. Vaswani or: How I learned to stop
using LSTMs and Love Attention

Not this Vaswani

Vaswani et al. 2017

obligatory Michael Bay Transformer

me after making slides!

UBC Machine Learning Reading Group – Fall 2022
Alan Milligan
alanmil@student.ubc.ca

Dr. Vaswani or: How I learned to stop
using LSTMs and Love Attention

Not this Vaswani

Vaswani et al. 2017

obligatory Michael Bay Transformer

me after making slides!

DISCLAIMER: I am not really a deep learning person and definitely not an NLP person, so I might (read will) make some errors
> 90% of these slides were made in the last 24 hours so they also probably have issues

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

We live in the age of transformers

- In the way AlexNet and CNNs revolution
computer vision, the advent of the
transformer has revolutionized NLP (and
several other fields)

- GPT-𝓍, BERT, AlphaFold2, SWITCH-C, CLIP,
DALL-E and many other famous models
are all based on transformers

- If you want publications and have big (like
really big) computers, you may want to
consider training giant transformers

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

We live in the age of transformers

- In the way AlexNet and CNNs revolution
computer vision, the advent of the
transformer has revolutionized NLP (and
several other fields).

- GPT-X, BERT, AlphaFold2, SWITCH-C, CLIP,
DALL-E are all based on transformers

- If you want publications and have big (like
really big) computers, you may want to
consider training giant transformers.

TLDR: All those fancy models by Google/OpenAI/Deepmind/Meta are often just really big transformers

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

Rule Based Methods Statistical Methods

“A blast from the past”

- We can try to hard code language rules

- This incorporates lots of domain knowledge
from the source and target language

- These were the original methods developed
in the 1970s

Hard Coding?

- We look at frequencies across large corpora

- Modeling probabilities of translated phrases
conditioned on original phrases

- Used things like Hidden Markov Models and
context free grammars, much closer to
“machine learning” and used in the mid 2000s

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

How can we go about translating this
(simple) sentence?

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

I like the green cat .

Je aime le chat vert .

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

I like the green cat .

Je aime le chat vert .

How do we handle cross-
language contractions?

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

I like the green cat .

Je aime le chat vert .

How do we handle cross-
language contractions?

Language “order” is often
not consistent

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

I speak zero German but 𝜖 French so I will use this example

“J’aime le chat vert.”

“I like the green cat.”

I like the green cat .

Je aime le chat vert .

How do we handle cross-
language contractions?

Language “order” is often
not consistent

How do we handle the end (and
start) of sentences?

What about variable lengths?

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Problem: I Don’t Speak German (or anything else)

Suppose Fred and I go to his favourite German restaurant and I want to look (sound?) cool

“I like the green cat.”

“J’aime le chat vert.”

Good rule based or statistical
models could probably handle

this fine but things get harder…
Oh hey it’s the mid 2010s and
deep learning just happened!

What can we do!

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Possibly flawed intuition: The Manifold of Meaning

- Suppose there exists some continuous
space of “meaning”, where every
sentence in every language is
represented the same

- Could we build a function that takes a
language into meaning land?

“I like the green cat.”
“J’aime le chat vert.”

”Meaning land” – language independent

Magic

“I like the green cat.”

- And then another function to take
it into a different language?

Magic 2

“J’aime le chat vert.”

Deep learning is magic (alchemy?) so let’s try that!

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

How do we make sentences continuous?
“I like the green cat.”

[“I”, “like”, “the”, “green”, “cat”, “.”]

[23, 796, 4012, 8923, 4850, 42]

[-2.51, 0.727, -0.943, -0.935, -0.072, 0.573],
[-0.4, -2.73, 0.906, 0.026, 0.216, 0.571],
[0.169, -1.13, 0.181, 0.086, 0.242, -2.35],
[0.279, 1.11, -0.896, 0.593, -0.211, -1.21],

.

.

.
[-2.03, 0.799, 0.448, 1.34, 1.14, -0.639],
[-1.71, -0.163, 0.863, -1.01, 1.21, 0.73],
[-0.932, -0.599, 0.558, -1.13, 1.54, 1.34],
[0.782, -0.542, -0.00264, -0.99, -1.9, 0.399]

Tokenization

Convert to token IDs

Token Embedding

- A sentence is broken up into “tokens”
- These could be words, word parts, or characters
- There also special tokens like “<SOS>”, “<EOS>”, “<OOV>”, and “<PAD>”

- Each token is assigned an ID from a predefined lookup table
- You could think of this like a one hot vector but its usually a dictionary

𝑑!"#!$

- Each token ID is assigned a vector in a fixed dimension (512 in Vaswani)
- These vectors are initialized with Gaussian noise
- Over the course of training, the embedding vector is treated as a

parameter and gradients are propagated into the vector to train

Model Loss𝑥#$%#&
∇ ∇

Warning: Entering hand wavey zone

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Recurrent Neural Network TLDR
How about we have a neural network eat these vectors one by one, plus the output of the previous step

ℎ! = 𝑓(𝑥! , ℎ!"#)

Do this for each of the
𝑛$%& input	embeddings

Encoding

ℎ'(&)*+(,
𝑦!- = 𝑓(ℎ!!"#, [𝑦!-"#])

Do this until the network
produces an end token

Decoding

𝑥! = source embedding vectors
ℎ! = latent state vectors
𝑦! = predicted token
𝑓 = neural network

Visually, (using some Stanford guy’s notation) PROBLEMS:

- It’s hard to model long range dependencies because the
model sees 𝑥(much later than 𝑥.

- ℎ'(&)*+(, is of fixed size, so it can only hold so much
information (related to the first point)

- Optimization is hard because propagating gradients
backwards in time involves taking matrices to high
powers, leading to vanishing or exploding gradient

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Recurrent Neural Network TLDR
How about we have a neural network eat these vectors one by one, plus the output of the previous step

ℎ! = 𝑓(𝑥! , ℎ!"#)

Do this for each of the
𝑛$%& input	embeddings

Encoding

ℎ'(&)*+(,
𝑦!- = 𝑓(ℎ!!"#, [𝑦!-"#])

Do this until the network
produces an end token

Decoding

𝑥! = source embedding vectors
ℎ! = latent state vectors
𝑦! = predicted token
𝑓 = neural network

Visually, (using some Stanford guy’s notation) PROBLEMS:

- It’s hard to model long range dependencies because the
model sees 𝑥(much later than 𝑥.

- ℎ'(&)*+(, is of fixed size, so it can only hold so much
information (related to the first point)

- Optimization is hard because propagating gradients
backwards in time involves taking matrices to high
powers, leading to vanishing or exploding gradient

Note: I am skipping a lot of details like what the inside of that neural network actually looks like,
but hopefully this gives an intuition

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Long Short-Term Memory TLDR (“fancy” RNNs)
Instead of just storing ℎ! as a function of 𝑥! and ℎ!"#, we can also store another hidden state 𝑐!

Possibly Flawed Intuition

- Let ℎ! be the “short term memory,”
updated by a network output of each
new input and previous short-term
memory

- Let 𝑐! be the “long term memory,”
updated by a learned linear combination
of previous memory and the input

ℎ!"#

𝑐!"#

LSTM CellUnreadable Math

(forget)

(input)

(output)

(candidate memory)

(updated long memory)

(updated short memory)

Benefits Remaining Issues

- Long term memory acts like residual connections
which allow for much better gradient flow during
optimization

- (ideally) the network can learn to remember
important stuff in 𝑐!

- The amount of information that can be propagated
forward is still fixed and long term dependencies can still
be forgotten

- Vanishing/Exploding gradient can still happen albeit less

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Long Short-Term Memory TLDR (“fancy” RNNs)
Instead of just storing ℎ! as a function of 𝑥! and ℎ!"#, we can also store another hidden state 𝑐!

Possibly Flawed Intuition

- Let ℎ! be the “short term memory,”
updated by a network output of each
new input and previous short-term
memory

- Let 𝑐! be the “long term memory,”
updated by a learned linear combination
of previous memory and the input

ℎ!"#

𝑐!"#

LSTM CellUnreadable Math

(forget)

(input)

(output)

(candidate memory)

(updated long memory)

(updated short memory)

Benefits Remaining Issues

- Long term memory acts like residual connections
which allow for much better gradient flow during
optimization

- (ideally) the network can learn to remember
important stuff in 𝑐!

- The amount of information that can be propagated
forward is still fixed and long term dependencies can still
be forgotten

- Vanishing/Exploding gradient can still happen albeit less

Note: I am skipping a lot of details again

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Summary: RNNs are problematic

Optimization Issues

Parallelization Issues

Long Term Dependency Issues

Fixed Context Information 𝑐! and ℎ! have predetermined size, so in problems with large inputs it will
be challenging to squeeze all information into these vectors

The sequential processing of inputs means that inputs early in the
sequence can be forgotten in very long sequences, even in LSTMs

Backpropagation through time means exponentiating matrices many times,
leading to exploding or vanishing gradients depending on the eigenvalues

RNNs are fundamentally sequential, meaning it is impossible to parallelize
processing of a sequence, slowing down training and inference

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Summary: RNNs are problematic

Optimization Issues

Parallelization Issues

Long Term Dependency Issues

Fixed Context Information 𝑐! and ℎ! have predetermined size, so in problems with large inputs it will
be challenging to squeeze all information into these vectors

The sequential processing of inputs means that inputs early in the
sequence can be forgotten in very long sequences, even in LSTMs

Backpropagation through time means exponentiating matrices many times,
leading to exploding or vanishing gradients depending on the eigenvalues

RNNs are fundamentally sequential, meaning it is impossible to parallelize
processing of a sequence, slowing down training and inference

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Finally, pay Attention (in an RNN)
How can we better model long range dependencies?

Idea: In the decoding phase, use a weighted combination of all ℎ!
so that we “pay attention” to the more important parts of the ℎ!

Note this diagram happens in sequence not all at once

Score(𝑠% , ℎ&)

Step 1
Generate all ℎ! in the encoding phase

Step 2
Repeat for until <EOS> token

Step 2.1
Compute Score(𝑠+ , ℎ/) for current decoder state

𝑠+ and all encoder states ℎ/
Step 2.2

Compute attention weights as Softmax(scores)
Step 2.3

Compute context vector 𝑐+ as attention weighted
sum of all ℎ/

Step 2.4
Decode using 𝑠+ and 𝑐+ as decoder input

Step 3

Profit

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

What is score though?
Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Options from Lilian Weng’s blog
Some authors use score functions with learned
parameters

We focus on scaled dot-product attention as it is used
in Vaswani et al.

Recall from math that a dot product is a measure of
similarity in a vector space

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

What is score though?
Sounds reasonable, but in order to compute the attention weights, we need some sort of scoring function

Options from Lilian Weng’s blog
Some authors use score functions with learned
parameters

We focus on scaled dot-product attention as it is used
in Vaswani et al.

Recall from math that a dot product is a measure of
similarity in a vector space

TLDR: Attention is a method of deciding which inputs to care about

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Enter Michael Bay: The Transformer
In an RNN with attention we are using all ℎ!, why don’t we just ditch the recurrent part

Every arrow
here is an
attention
computation

Vaswani et al. proposes:
“Attention is all you need”

- Have an encoder where all input
embeddings pay attention to all other
input embeddings

- Add “positional encodings” to input
embeddings so that the sequential
structure is retained

- Have a decoder that pays attention to
all input embeddings as well as the
already decoded embeddings

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 1: Self-Attention Encoder

Ingredients

1. Embeddings + Positional Encodings

2. Multi-Head Attention

3. Residual Connection and Layer Norm

4. Fully Connected Layer

Lets build a Transformer Encoder!

Encoder Objective

Create an “interesting” learned
representation of the inputs useful for

the Decoder (next)

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 1.1: Positional Encodings
Word Embedding

Positional Encoding

Same as earlier, Token IDs mapped into real vectors that
are learned during training

- Vectors defined by this formula are added to each word embedding
vector to add “relative position” between embeddings

- Not intuitive to me, but this formula allows for easy relative position
learning via some trigonometric addition identities

- You can also just add torch.nn.Embedding style absolute positional
encodings in the same way as word embedding and learn via
backpropagation (Vaswani et al. tested this with similar results)

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 1.2: Multi-Head Self-Attention
Here is where the real magic happens

Recall Scaled Dot-Product Attention

- In Vaswani et al, we do a learned projection of the input to
produce matrices 𝑄,𝐾, which are analogous to 𝑠, ℎ above

- The columns of the non-linear matrix product are akin to
the attention weights in the RNN example, we use these
weights on another learned projection of the input 𝑉

More is Better

- Rather than doing attention once on the input, lets do
it N (= 6) times

- N different copies of projection matrices are learned,
attention is run N times, and then all outputs are
projected back to 𝑑0)*'1

- More heads mean different heads can learn different
things like grammar and vocabulary

- Also ensemble good

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 1.3: Layer Norm and Residual Connections

Layer Normalization

- Given the activations of a layer, we compute the mean
and standard deviation

- We subtract and divide by these values respectively,
then multiply and add by learned parameters (so that
the identity can be learned as in Batch Norm)

something something “reduce internal covariate shift”

Residual Connections

- As with ResNets from vision, instead of directly
transforming the input, we learn a residual, then
apply layer norm

Where Sublayer(x) is either Multi-Head Attention or a
feed forward network

- Residual Connections have been shown to make
optimization easier in cases where transformations
should be close to identity maps

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 1.4: Position-wise Feed Forward Network
Here we have a simple two layer ReLU network that acts on each embedding individually

512

n

n

2048 512

n

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Self-Attention Encoder Assembled!

- With these pieces, we can now create a latent representation of an
input sentences where each vector has applied self attention N times
across h heads

- In Vaswani et al, N = 6 and h = 8

- The output is a matrix of embedding vectors in (n x
512)

- We can now use this in step 2: the Decoder

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 2: Masked and Cross Attention Decoder

Ingredients

1. Embeddings + Positional Encodings [Done]

2. Masked Self Attention

3. Residual Connection and Layer Norm [Done]

4. Encoder-Decoder Cross Attention

5. Fully Connected Layer [Done]

6. Output Layer

Decoder Objective

Given Encoder(“I like the green cat. <EOS>”) and
Decoder(“<SOS> J’aime le chat ”), predict “vert”.

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 2.2: Masked Self Attention
- Vaswani et al. wanted to “preserve [the] auto-regressive property” of the model, meaning that no

word should be able to attend to words decoded after it

- This is accomplished with “masking,” which essentially sets the score of later entries to zero

This triangular mask represents which
position each position can attend to

Visualizing Legal Attention Connections

As math,

Where M is the lower triangular matrix on the left

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 2.4: Encoder-Decoder Cross Attention
- We want the decoder to be able to use the “interesting” representation learned by the encoder

- This is done by letting the decoder embeddings attend to the keys and values of the Encoder

Projected Decoder Output Projected Encoder Output As before, this is really multi-head cross attention

Decoder Output Encoder Output

Q

K,V

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Step 2.6: Output Projection

n

n

Vocab size512

After N decoder layers, we project up to the dimension of the target vocabulary and softmax for predictions

Softmax()

Probability vector

Important Note:

During training/testing, we feed in
the whole target sentence shifted
by <SOS> since the self attention
mask will make it seem like you are
doing a one step prediction at
every position. This was non-
obvious to me.

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

We have assembled the full Transformer!
- That was a lot of deep learning jargon that I don’t expect everyone to

understand

- It took me over 10 attempts to grasp all of this and I still have questions

Transformer TLDR:

- Embed source words with some learnable vector plus positional encodings

- Run a few rounds of scaled dot product self attention plus a layer
normalized feedforward network for your source embeddings

- Embed known target words (or <SOS>) with some learnable vector plus
positional encodings

- Run a few rounds of forward masked self attention, cross attention with the
encoded source sentence, layer normalization, and a feedforward network

- Project and softmax the output, profit

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

How to train your transformer
We now know the architecture, but there are still some training details

Regularization

1. Despite no mention in the
paper, all implementations
I’ve seen use ”weight
decay,” also known as L2
regularization

2. Dropout is applied to both
attention and feed forward
layers as well as the
embeddings

3. ”Label Smoothing” which
punishes incorrect softmax
outputs slightly less

Loss Function Optimizer

- Cross Entropy loss is applied
between the prediction
vector and (smoothed) label
vector

- The loss is computed
independently for each
prediction in a forward pass,
recalling that we make several
predictions concurrently

- Everyone’s good friend Adam
is used for optimization with
the following odd learning
rate schedule using 4000
warmup steps (no justification
provided)

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

How to inference your transformer

Forward Pass Beam Search

“I like the
green cat.” “<SOS>”

You get a
probability vector
for the next word

- To get the better predictions, Vaswani et al. (and NLP in
general) will use BeamSearch(b), a process where we
autoregressively predict b copies until all reach <EOS>

- Each beam is ranked by total probability, and we only
propagate the top b at any given time (the others die)

In this example b = 2

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Transformer Benefits

Long Range Dependency Computational Efficiency
- Self-attention can model arbitrarily long sequences in

constant distance

- This completely removes the issue RNNs face about
forgetting the start (or middle for bidirectional) of the
sequence

- Below are visualized attention weights during translation

- Since we no longer have to process sentences token by token, Transformers
are extremely parallelizable and GPU friendly

- Self attention masking means each training sequence of length n gives us n
gradients from one forward pass

- Every attention had can be on a on a different machine, every layer can be
on a different machine, the encoder and decoder can be on different
machines, etc.

- Some argue the true reason transformers perform is simply that we are
able to scale them to levels that would be impossible for other methods

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

Generic Results Table

I have elected to leave BLEU out of the talk, but it’s a
measure of how good translation is and more is better

Also note the FLOPs difference relative to performance

Machine Translation LSTMs Attention Transformers

“Alan”

“is” “rather”

“sad!”

My unsolicited comments

Good stuff Not good stuff

- If you read machine learning literature, you know these
models have revolutionized several fields

- There are some very cool tricks and innovations that I
have struggled to highlight in this paper, notable how self
attention masking can give you multiple independent
gradients for in a single pass

- I like that “X is all you need” has become a meme title

- Transformer based models generate the best news
headlines

- Training is great if you have a DGX A100 server lying around, but
it took 2 days on my laptop to get through 20 epochs of 1000
before my laptop threw some OS error and killed it

- Self-attention across all inputs is an 𝑂(𝑛%) operation (all inputs
attend to all other inputs), which can very extremely costly when
you deal with things like images

- There is much in trying to solve the above problem such as the
Performer, Linformer, and Reformer (great original names guys)

- Despite the technical innovations and contributions, the quality
of Attention is all you need as a paper is fucking terrible how did
these people get published jesus this took way too long…..

REDACTED
REDACTED

Thanks for listening !

Feedback appreciated I am very inexperience at presenting technical content

see there’s a typo!

