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Introduction



Introduction

● As we’ve discussed in previous MLRG’s, the main use of transformers has been for 
NLP tasks
○ This involves training on some large corpus, then doing fine-tuning on some 

smaller dataset
● Do not need CNN’s to effectively perform image tasks, and their dominance in vision 

tasks is being challenged by the Vision Transformer (ViT)
● This talk will instead focus on the discussion of transformers for computer vision 

tasks
○ Will discuss more details about this in a bit



Related Work and Motivation



Related Work and Motivation

● The simplest use of self-attention for images would be to have every pixel in the imagine 
attend to every other pixel.
○ This has quadratic cost in the number of pixels, will not scale for larger inputs

● Another approach is to apply self-attention only in local neighbourhood for each query pixel
● Finally another approach is to do a type of approximation to global self-attention, referred to 

as Sparse Transformers
● The paper I will discuss takes a simple approach to scale transformers to images, which 

allows an almost direct application  of transformers 



Related Work and Motivation

● When pre-training on smaller datasets, transformers do not outperform CNN’s for 
image tasks
○ This is because transformers lack many of the inductive biases that CNN’s have 

for images. As in, CNN’s are designed in such a way to be used for image data, 
which is not the case for transformers.

● Require large pre-training datasets to actually see the usefulness of the ViT models
○ This motivates the work discussed in this paper



Architecture



Architecture

● Break image into patches of a chosen size (say 16 

by 16 pixels)

○ Can think of these patches as 

corresponding to words in the NLP setting

● Flatten these patches into vectors 

● Multiply these flattened patches by a matrix E 

○ This is the linear projection step that 

transforms the input into a smaller 

D-dimensional space



Architecture

● Add learnable class embeddings
○ Can think of this as being used to learn labels 

for image
● Add learnable positional embeddings to each of the 

patch embeddings 
○ These embeddings only hold 1D information, 

as the authors tried using 2D information and 
found this did not help much

● This is then passed to the transformer encoder that 
we’ve previously seen (same as in BERT paper)



Architecture

● The paper also discusses a hybrid model which combines transformers and CNN’s

● Instead of directly multiplying the image patches by the matrix E (which performs the 

projection), we replace the image patches with patches extracted from a CNN feature map

○ The feature map is the result of applying a filter to the image of interest



Results



Results

● Train 3 versions of their model, of varying sizes

● For context, the Base and Large models are taken from BERT



Results

● This table summarizes the number of CPU days taken to pre-train each of the various 

models, as well as the achieved test accuracies on various datasets

● Overall the huge VIT model seems to perform the best 

● The ViT models also took a lot less time to pre-train



Results

● This table analyzes the dataset VTAB by task group. In particular:
○ Natural: Pets, CIFAR, etc,
○ Specialized: Medical and Satellite Imagery
○ Structured: Tasks that require geometric understanding like localization 

● ViT performs well across different types of task groups



Results

● Breaks down the task groups into their separate tasks

● Further experiments to support/justify the use of their larger model

● In some places the dataset pre-trained on makes a big difference in task accuracies 



Results

● When pre-training on smaller datasets, the ResNets outperform the ViT’s

● As you increase the pre-training dataset size, the ViT begins to perform better

○ It seems like more data really helps with ViT’s



Results

● Here a subset of the JFT is used for pre-training

○ As the subset used is increased again we eventually see the ViT models overtake 

ResNets



Results

● For the same amount of computing power, the ViT models outperform ResNet

● The Hybrid models outperform the ViT models for smaller amounts of compute, but as 

we use more computational resources, the ViT model also outperforms the hybrid 

methods



Results

● This data shows how the error changes as we vary different parameters

● Varying all parameters proportionally seems to work well

● Varying depth seems better than width, which seems to level off 

● Scaling the patch size seems to also help as well



Results

● This image shows the learned position 

embeddings of the model

● The ViT model actually learns to encode 

distance within the images provided based 

on the similarity of position embeddings

● Patches closer together have similar 

position embeddings



Results

● Shows that the transformer is attending to the 

important regions of the provided images 



Additional Results (beyond the original paper)



Additional Results

● An even larger ViT model was trained, and beat the previous “huge” ViT model

● Also beats the ResNet results (grey dots)



Additional Results

● Some more results with the larger model, showing that scaling up even further can 

make a difference



Additional Results

● Scaling down the ViT seems to really hurt performance

○ For the same sampling rate, the larger models perform significantly better

● As well, keeping the amount of data used for training constant and scaling down the 

model hurts performance significantly



Additional Results

● We see here that as we continually scale up the models and provide larger pre-training 
datasets we can get better results

● Also see a leveling off for each of the models, and providing larger datasets provides 
marginal gains in error rate improvements

● Can read more about this in the “Scaling Laws for Neural Language Models” paper



Conclusion



Conclusion

● Require significantly fewer resources to pre-train than previous methods, but 

perform even better

○ Increasing pre-training dataset sizes and the transformer model sizes help with 

performance

● Even though transformers were originally designed for NLP tasks, they have 

extended well to image classification tasks

○ What other tasks could transformers be used for?

● Some challenges that still remain are how transformers can be extended to other 

image tasks such as image segmentation  



Conclusion

● Let us conclude with some issues with this work (at least in my opinion)

● Those of us with fewer computational resources cannot replicate these results, 

limiting this line of work to very large companies

● All of the usual bias and prejudice issues that come from labeling image data

● Main takeaway from the paper as far as I can tell is that bigger is better, which I don’t 

consider overly insightful



Thank you for listening! 

Questions?
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