An Image is Worth 16 by 16 Words: Transformers for Image Recognition at Scale (This presentation is all you need)

By Curtis Fox

Outline

- Introduction
- Related Work and Motivation
- Architecture
- Results
- Conclusion

Introduction

Introduction

- As we've discussed in previous MLRG's, the main use of transformers has been for NLP tasks
 - This involves training on some large corpus, then doing fine-tuning on some smaller dataset
- Do not need CNN's to effectively perform image tasks, and their dominance in vision tasks is being challenged by the Vision Transformer (ViT)
- This talk will instead focus on the discussion of transformers for computer vision tasks
 - Will discuss more details about this in a bit

Related Work and Motivation

Related Work and Motivation

- The simplest use of self-attention for images would be to have every pixel in the imagine attend to every other pixel.
 - This has quadratic cost in the number of pixels, will not scale for larger inputs
- Another approach is to apply self-attention only in local neighbourhood for each query pixel
- Finally another approach is to do a type of approximation to global self-attention, referred to as Sparse Transformers
- The paper I will discuss takes a simple approach to scale transformers to images, which allows an almost direct application of transformers

Related Work and Motivation

- When pre-training on smaller datasets, transformers do not outperform CNN's for image tasks
 - This is because transformers lack many of the inductive biases that CNN's have for images. As in, CNN's are designed in such a way to be used for image data, which is not the case for transformers.
- Require large pre-training datasets to actually see the usefulness of the ViT models
 - This motivates the work discussed in this paper

- Break image into patches of a chosen size (say 16 by 16 pixels)
 - Can think of these patches as corresponding to words in the NLP setting
- Flatten these patches into vectors
- Multiply these flattened patches by a matrix E
 - This is the linear projection step that transforms the input into a smaller D-dimensional space

- Add learnable class embeddings
 - Can think of this as being used to learn labels for image
- Add learnable positional embeddings to each of the patch embeddings
 - These embeddings only hold 1D information, as the authors tried using 2D information and found this did not help much
- This is then passed to the transformer encoder that we've previously seen (same as in BERT paper)

- The paper also discusses a hybrid model which combines transformers and CNN's
- Instead of directly multiplying the image patches by the matrix E (which performs the projection), we replace the image patches with patches extracted from a CNN feature map
 - The feature map is the result of applying a filter to the image of interest

Model	Layers Hidden size		MLP size	Heads	Params		
ViT-Base	12	768	3072	12	86M		
ViT-Large	24	1024	4096	16	307M		
ViT-Huge	32	1280	5120	16	632M		

- Train 3 versions of their model, of varying sizes
- For context, the Base and Large models are taken from BERT

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- This table summarizes the number of CPU days taken to pre-train each of the various models, as well as the achieved test accuracies on various datasets
- Overall the huge VIT model seems to perform the best
- The ViT models also took a lot less time to pre-train

- This table analyzes the dataset VTAB by task group. In particular:
 - Natural: Pets, CIFAR, etc,
 - Specialized: Medical and Satellite Imagery
 - Structured: Tasks that require geometric understanding like localization
- ViT performs well across different types of task groups

	Table 9:			B	Breakdown of VTAB-1k performance across tasks.															
	 Caltech101 	• CIFAR-100	• DTD	 Flowers 102 	 Pets 	• Sun397	NHVS •	 Camelyon 	 EuroSAT 	 Resisc45 	 Retinopathy 	 Clevr-Count 	 Clevr-Dist 	• DMLab	 dSpr-Loc 	 dSpr-Ori 	 KITTI-Dist 	 sNORB-Azim 	 sNORB-Elev 	 Mean
ViT-H/14 (JFT)	95.3	85.5	75.2	99.7	97.2	65.0	88.9	83.3	96.7	91.4	76.6	91.7	63.8	53.1	79.4	63.3	84.5	33.2	51.2	77.6
ViT-L/16 (JFT)	95.4	81.9	74.3	99.7	96.7	63.5	87.4	83.6	96.5	89.7	77.1	86.4	63.1	49.7	74.5	60.5	82.2	36.2	51.1	76.3
ViT-L/16 (I21k)	90.8	84.1	74.1	99.3	92.7	61.0	80.9	82.5	95.6	85.2	75.3	70.3	56.1	41.9	74.7	64.9	79.9	30.5	41.7	72.7

- Breaks down the task groups into their separate tasks
- Further experiments to support/justify the use of their larger model
- In some places the dataset pre-trained on makes a big difference in task accuracies

- When pre-training on smaller datasets, the ResNets outperform the ViT's
- As you increase the pre-training dataset size, the ViT begins to perform better
 - \circ ~ It seems like more data really helps with ViT's ~

- Here a subset of the JFT is used for pre-training
 - As the subset used is increased again we eventually see the ViT models overtake ResNets

- For the same amount of computing power, the ViT models outperform ResNet
- The Hybrid models outperform the ViT models for smaller amounts of compute, but as we use more computational resources, the ViT model also outperforms the hybrid methods

- This data shows how the error changes as we vary different parameters
- Varying all parameters proportionally seems to work well
- Varying depth seems better than width, which seems to level off
- Scaling the patch size seems to also help as well

- This image shows the learned position embeddings of the model
- The ViT model actually learns to encode distance within the images provided based on the similarity of position embeddings
- Patches closer together have similar position embeddings

- Input Attention
- Shows that the transformer is attending to the important regions of the provided images

Additional Results (beyond the original paper)

- An even larger ViT model was trained, and beat the previous "huge" ViT model
- Also beats the ResNet results (grey dots)

• Some more results with the larger model, showing that scaling up even further can make a difference

- Scaling down the ViT seems to really hurt performance
 - For the same sampling rate, the larger models perform significantly better
- As well, keeping the amount of data used for training constant and scaling down the model hurts performance significantly

- We see here that as we continually scale up the models and provide larger pre-training datasets we can get better results
- Also see a leveling off for each of the models, and providing larger datasets provides marginal gains in error rate improvements
- Can read more about this in the "Scaling Laws for Neural Language Models" paper

Conclusion

Conclusion

- Require significantly fewer resources to pre-train than previous methods, but perform even better
 - Increasing pre-training dataset sizes and the transformer model sizes help with performance
- Even though transformers were originally designed for NLP tasks, they have extended well to image classification tasks
 - What other tasks could transformers be used for?
- Some challenges that still remain are how transformers can be extended to other image tasks such as image segmentation

Conclusion

- Let us conclude with some issues with this work (at least in my opinion)
- Those of us with fewer computational resources cannot replicate these results, limiting this line of work to very large companies
- All of the usual bias and prejudice issues that come from labeling image data
- Main takeaway from the paper as far as I can tell is that bigger is better, which I don't consider overly insightful

Thank you for listening!

Questions?

References

- <u>https://arxiv.org/abs/2010.11929</u>
- https://www.youtube.com/watch?v=BP5CM0YxbP8