An Image is Worth 16 by 16 Words:
Transformers for Image Recognition at Scale
(This presentation is all you need)

By Curtis Fox
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Introduction



- Introduction

As we've discussed in previous MLRG's, the main use of transformers has been for
NLP tasks

o Thisinvolves training on some large corpus, then doing fine-tuning on some

smaller dataset

Do not need CNN’s to effectively perform image tasks, and their dominance in vision
tasks is being challenged by the Vision Transformer (ViT)
This talk will instead focus on the discussion of transformers for computer vision
tasks

o  Will discuss more details about this in a bit



Related Work and Motivation



e Related Work and Motivation

The simplest use of self-attention for images would be to have every pixel in the imagine
attend to every other pixel.

o  This has quadratic cost in the number of pixels, will not scale for larger inputs
Another approach is to apply self-attention only in local neighbourhood for each query pixel
Finally another approach is to do a type of approximation to global self-attention, referred to
as Sparse Transformers
The paper | will discuss takes a simple approach to scale transformers to images, which
allows an almost direct application of transformers



— Related Work and Motivation

When pre-training on smaller datasets, transformers do not outperform CNN'’s for
image tasks
o Thisis because transformers lack many of the inductive biases that CNN'’s have
for images. As in, CNN'’s are designed in such a way to be used for image data,
which is not the case for transformers.
Require large pre-training datasets to actually see the usefulness of the ViT models
o This motivates the work discussed in this paper



Architecture



Vision Transformer (ViT)
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Architecture

Transformer Encoder

Embedded
Patches

Break image into patches of a chosen size (say 16
by 16 pixels)
o  Canthink of these patches as
corresponding to words in the NLP setting
Flatten these patches into vectors
Multiply these flattened patches by a matrix E
o  Thisisthe linear projection step that
transforms the input into a smaller
D-dimensional space
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Architecture

Transformer Encoder

Embedded
Patches

Add learnable class embeddings
o  Canthink of this as being used to learn labels
for image
Add learnable positional embeddings to each of the
patch embeddings
o  These embeddings only hold 1D information,
as the authors tried using 2D information and
found this did not help much
This is then passed to the transformer encoder that
we've previously seen (same as in BERT paper)



— Architecture

e The paper also discusses a hybrid model which combines transformers and CNN’s
e Instead of directly multiplying the image patches by the matrix E (which performs the
projection), we replace the image patches with patches extracted from a CNN feature map
o Thefeature map is the result of applying a filter to the image of interest



Results



Results

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

e Train 3 versions of their model, of varying sizes
e For context, the Base and Large models are taken from BERT



Results

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+004 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+023 76.284+046 72.72+0.21 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

This table summarizes the number of CPU days taken to pre-train each of the various
models, as well as the achieved test accuracies on various datasets

Overall the huge VIT model seems to perform the best

The ViT models also took a lot less time to pre-train



_— Results
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e Thistable analyzes the dataset VTAB by task group. In particular:

o Natural: Pets, CIFAR, etc,

o Specialized: Medical and Satellite Imagery

o  Structured: Tasks that require geometric understanding like localization
e ViT performs well across different types of task groups



_— Results

Table 9: Breakdown of VTAB-1k performance across tasks.

e Caltech101
o CIFAR-100
» DTD
® Flowers102
e Pets
® Sun397
e SVHN
e Camelyon
® EuroSAT
® Resisc45
» Retinopathy
® Clevr-Count
® Clevr-Dist
e DMLab
e dSpr-Loc
® dSpr-Ori
o KITTI-Dist
® sSNORB-Azim
o sNORB-Elev
® Mean

ViT-H/14 (JFT)| 95.3 85.5 75.2 99.7 97.2 65.0 88.9 833 96.7 914 76.6 91.7 63.8 53.1 794 63.3 84.5 332 512 77.6
ViT-L/16 (JFT) 954 81.9 743 99.7 96.7 63.5 87.4 83.6 96.5 89.7 77.1 864 63.1 49.7 745 60.5 822 36.2 51.1 76.3
ViT-L/16 (121k) 90.8 84.1 74.1 99.3 92.7 61.0 80.9 825 95.6 85.2 753 70.3 56.1 41.9 74.7 649 799 30.5 41.7 72.7

e Breaks down the task groups into their separate tasks
e Further experiments to support/justify the use of their larger model
e Insome places the dataset pre-trained on makes a big difference in task accuracies



_— Results
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e When pre-training on smaller datasets, the ResNets outperform the ViT’s

e Asyouincrease the pre-training dataset size, the ViT begins to perform better
o It seems like more data really helps with ViT’s



_— Results
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e Here asubset of the JFT is used for pre-training

o Asthe subset used is increased again we eventually see the ViT models overtake
ResNets



_— Results
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For the same amount of computing power, the ViT models outperform ResNet
The Hybrid models outperform the ViT models for smaller amounts of compute, but as

we use more computational resources, the ViT model also outperforms the hybrid
methods
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This data shows how the error changes as we vary different parameters
Varying all parameters proportionally seems to work well

Varying depth seems better than width, which seems to level off
Scaling the patch size seems to also help as well



Position embedding similarity
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Results

This image shows the learned position
embeddings of the model

The ViT model actually learns to encode
distance within the images provided based
on the similarity of position embeddings
Patches closer together have similar
position embeddings



Results

Input  Attention

e Shows that the transformer is attending to the
important regions of the provided images




Additional Results (beyond the original paper)



O Additional Results
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e Aneven larger ViT model was trained, and beat the previous “huge” ViT model
e Also beats the ResNet results (grey dots)



O Additional Results

85
o - Benchmark ImageNet INet V2 INet Real.  ObjectNet VTAB (light)
<
g NS (Eff.-L2) [39] 88.3 80.2 5 68.5 .
3 MPL (Eff.-L2) [24] 90.2 . 91.02 . =
- 175 CLIP (ViT-L/14) [26] 85.4 75.9 - 723 =
g ALIGN (Eff.-L2) [16] 88.6 70.1 . B .
o BiT-L (ResNet) [18] 87.54 - 90.54 58.7 76.29
Z 70 ViT-H/14 [11] 88.55 = 90.72 . 77.63
o 5
g 7 ° SUT’ ‘P’;T'G Our VIT-G/14 90.45+0.03 $3.33+0.03 90.81+0.01 70.53+0.52 78.29+0.53
_ ’ — iT- Fy

& /' #  SimCLR v2

* » BYOL
0 5 10 " 25

Examples per class

e Some more results with the larger model, showing that scaling up even further can
make a difference



O Additional Results
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e Scalingdown the ViT seems to really hurt performance
o For the same sampling rate, the larger models perform significantly better
e Aswell, keeping the amount of data used for training constant and scaling down the
model hurts performance significantly



ImageNet finetune error rate [%]

We see here that as we continually scale up the models and provide larger pre-training

Additional Results
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datasets we can get better results

Also see a leveling off for each of the models, and providing larger datasets provides

marginal gains in error rate improvements

Can read more about this in the “Scaling Laws for Neural Language Models” paper
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— Conclusion

Require significantly fewer resources to pre-train than previous methods, but
perform even better

o Increasing pre-training dataset sizes and the transformer model sizes help with

performance

Even though transformers were originally designed for NLP tasks, they have
extended well to image classification tasks

o  What other tasks could transformers be used for?
Some challenges that still remain are how transformers can be extended to other

image tasks such as image segmentation



— Conclusion

Let us conclude with some issues with this work (at least in my opinion)

Those of us with fewer computational resources cannot replicate these results,
limiting this line of work to very large companies

All of the usual bias and prejudice issues that come from labeling image data

Main takeaway from the paper as far as | can tell is that bigger is better, which | don’t
consider overly insightful



Thank you for listening!

Questions?
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